TYPES 16R802, 16R802A IEEE-696 TWO-PORT DMA CONTROLLER

- * Coupled with 16R801 IEEE-696 Bus State Sequencer and 16L801A IEEE-696 DMA Priority Comparator generates all cycle timing for high performance IEEE-696 DMA controller
- * Generates timing signals for block transfers, block initialize, and block search functions
- * Byte by byte or continuous DMA transfer modes

description

The 16R802 coupled with the 16R801 IEEE-696 Bus State Sequencer and the 16L801A IEEE-696 DMA Priority Comparator form the heart of a high performance DMA controller for the IEEE-696 bus. With external address counters, a byte transfer counter, an 8-bit

data latch and a few gates, the two-port DMA controller is complete. With this configuration, block memory (or I/O) transfers and block initialization is possible. Block searches are possible with the addition of a comparator.

pin description

Clock input. All timing is referenced to the falling edge of this clock.

DADK DMA Acknowledge input. (from 16L801A) Active low. If low and HLDA is high, causes the 16R802 to execute a command on the next falling edge of CLK.

HLDA Hold Acknowledge input. Active high. Same as the IEEE-696 HLDA signal.

ABORT Abort command input. Active low. Causes termination of the current command and supresses clocking of address counters and the byte transfer counter. This input is normally used by a comparator circuit in the block search mode.

- Terminal count input. Active low. Causes termination of the current command. Address counters and the byte transfer counter are clocked in the normal marner. This input is connected to the terminal count output of the byte transfer counter.
- Bus state three input. (from 16R801) Active low. Used to signal the DMA controller that the current bus cycle will terminate on the next clock. During BS3, ABORT and TC are sampled to decide whether or not to start a new bus cycle.
- MD₁, MD₀ Mode select inputs. Selects one of four operation modes according to the following table:

MD ₁	MDØ	SYMBOLIC	MODE DESCRIPTION
Ø	0	(A)	Read A
0	1	-> (A)	Write A
1	Ø	(A) (B)	Read A, read B
1	1	(A) -> (B)	Read A, write B

- **DUNE** Command done output. Active low. Goes low for one clock after the current DMA operation is completed. If BLOCK is high, DONE goes low when the entire transfer is done.
- COUNT Count down byte transfer output. Active low. Goes active for one clock to decrement the byte transfer counter. Either the rising or falling edge of this signal can be used to clock the byte transfer counter.
- CLK A / Address counter A / Address counter B clock outputs. The CLK B rising edge of CLK A or CLK B should increment (decrement) the appropriate address counter.
- A/B Port A / port B select output. Selects address counter A if high or address counter B if low. Qualified with BC from the 16R901, A/B should enable the appropriate address counter onto the address bus.
- RD/WR Read / write control output. Active high. This signal is high if the next bus cycle is a read cycle, and a write cycle if low. This signal is connected to the RD/WR input to the 168801.

TYPES 16R802, 16R802A IEEE-696 TWO-PORT DMA CONTROLLER

Start bus cycle output. Active low. This signal connects to the STCY input of the 16R801, and is used to initiate bus cycles.

Transfer state active output. Active low. Active when the bus control signals are to be gated onto the control bus. This also applies to the XS I and XS II states of the IEEE-696 DMA protocol where both the permanent master and the temporary master drive the control bus.

TYPES 16R802, 16HR02A IEEE-696 TWO-PORT DMA CONTROLLER

recommended operating conditions

	FARPETER		16F882 16F883A			UNIT			
						 MIN	NOH	MAX	
Supply volt	age, Vrc		′.	- 1		4.75	5	5.డ	V
Low-level o	output current,	Į _{OL}			1.		·····	24	mA
High-level	output current.	IOH			,			-3,2	mA
Operating 1	free-air temper	ature				0		70	deg C

electrical characteristics over operating conditions

PARPLETER		Test conditions	16	UNIT	
			MIN TYP MAX		
VIL	Low-level input voltage			0.8	V
VIH	High-level input voltage		2.0	***************************************	V
VIK	Input clamp voltage	$V_{DC} = MIN I_{I} = -16mA$	-	0.9 -1.2	V
IIL	Low-level input current	$V_{DC} = MAX V_I = 0.4V$		-20 -250	uА
I _{IH}	High-level input current	$V_{DC} = MAX V_I = 2.4V$		25	υA
II	Maximum input current	$V_{DC} = MAX V_I = 5.5V$		1	mA
VaL	Low-level output voltage	$I^{U} = W \times \wedge I^{H} = W \times $ $I^{U} = W \times \wedge I^{H} = W \times \wedge V \times \wedge I^{H} = W \times \wedge I^{H} = W \times \wedge V \times \wedge I^{H} = W \times \wedge V \times \wedge I^{H} = W \times \wedge V \times \wedge V$		0.5	ý
VaH	High-level output voltage	$I^{DH} = WHX A^{IH} = WHX$ $I^{DC} = WIN A^{IT} = WHX$	2.4	3.5	V
IOZ	Off-state output current	$V_{OC} = MIN V_{IL} = MAX V_{OL} = 0.4V$ $I_{OH} = MAX V_{IH} = MIN V_{OH} = 2.4V$		-100 100	υA
IOS	Short-circuit output current	V _{DC} = 5V	-30	-60 -90	mA
Inc	Supply current	V _{CC} = MAX	1	120 180	mA

switching characteristics over operating conditions TEST CONDITIONS: $R_1 = 200$ ohes, $R_2 = 390$ ohes, $C_L = 50$ pF

PARPETER	FRDI (INFUT)		1678829	16R882	UNIT
	(INPUT)	(QUÍN)	MIN TYP MAK	MIN TYP MAX	
tplH tpHL					1765
tpH_					
tp H					
tpH_					YE
t _{PLH}					
tpH					ns ·
tрін					
tpHL					ns .